
Windows workshop 2010

Understanding Software

Dependencies in Windows
Roland Yap

School of Computing

National University of Singapore

Singapore

ryap@comp.nus.edu.sg

Motivation

• Software is complex with a ecosystem of
dependencies

– Installation can cause other S/W to fail (e.g overwriting old
library versions)

– Uninstallation can cause S/W to fail (e.g removing critical
shared libraries)

• Interactions and dependencies between software are
difficult to understand

• We explore visualization as a tool for understanding
software dependencies

– See Y. Wu, R.H.C. Yap and R. Ramnath, Comprehending
Module Dependencies and Sharing, ICSE 2010, to appear

Note: Dave’s talk – what is an application?

Examples of dependencies (1)

• Binaries used by notepad
– c:\windows\apppatch\acgenral.dll

– c:\windows\system32\avgrsstx.dll

– c:\windows\system32\imm32.dll

– c:\windows\system32\lpk.dll

– c:\windows\system32\msacm32.dll

– c:\windows\system32\msctf.dll

– c:\windows\system32\msctfime.ime

– c:\windows\system32\shimeng.dll

– c:\windows\system32\usp10.dll

– c:\windows\system32\uxtheme.dll

– c:\windows\system32\winmm.dll

– c:\windows\system32\winspool.drv

– c:\windows\winsxs\x86_microsoft.windows.common-
controls_6595b64144ccf1df_6.0.2600.5512_x-ww_35d4ce83\comctl32.dll

Examples of dependencies (2)

• Simple boot (only Windows installed)
– DLLs: 154

– EXEs: 10

– Drivers: 1

– Ime: 1

• Typical boot (Windows + applications)
– DLLs: 274

– EXEs: 15

– Telephony/Modem: 6

– Drivers: 3

– ActiveX: 2

– Ime: 1

What are binaries?

• EXE (executables) are considered binaries

• Other binary types are DLL (dynamic

linked libraries), OCX (ActiveX controls),

SYS (drivers) and CPL (control panel

applets), …

Visualization Objectives

• Visualizing binaries used by a particular

executable

• Visualize any commonalities between

binaries

• Visualize dependencies between binaries

Visualization (1)

• Basic dependency graph

• Graph is too dense

Revisiting processes (1)

• Process creation: Broken into many native calls.

• Very different from UNIX’s fork+execve

• The user space Win32 API CreateProcess()
1. Open the EXE file (ZwCreateFile)

2. Create process object (ZwCreateProcess)

3. Create thread object (ZwCreateThread)

4. Notify Windows subsystem (csrss)

5. Start the initial thread (ZwResumeThread)

Note: Recall Dave’s talk – NT native system calls

Revisiting processes (2)

• Binary loading: broken into many native calls

• Similar to UNIX: dlopen = open+mmap+…

• The user space Win32 API LoadLibrary()

1. Open the binary (ZwCreateFile)

2. Create a Section object (ZwCreateSection)

3. Map the binary to VM (ZwMapViewOfSection)

4. Dynamic linking, relocation…

Binary Dependency Visualization

• Two types of nodes: EXE, DLL + etc

• Three types of directed edges
1. EXE X launches another EXE Y

2. EXE X load a DLL Y

3. A function in binary X calls a function in binary Y

• How are binaries shared among programs?

– EXE Dependency Graph
– Only Type 1 and 2 edge

– Group DLLs by loader

• How binaries interact?

– DLL Dependency Graph
– Only Type 2 and 3 edge

– Group DLLs manually by functionality or software vendor

Visualization (1)

• Basic dependency graph

• Graph is too dense

A more usable Visualization: EXE

Dependency Graph

• Grouped dependency graph

1

1

1

2

2

Collecting binary dependency

information

• EXE X launches another EXE Y

– Use the kernel

PsSetCreateProcessNotifyRoutine() API

• EXE X load a DLL Y

– Use the kernel

 PsSetLoadImageNotifyRoutine() API

• A function in binary X calls a function in binary Y

– Instrument code execution

Comparing Microsoft Word and

Open Office Writer

DLL Dependency Graph: actual

binary usage

• Some definitions:

– An EXE-DLL dependency in a DLL Dependency

Graph is when there is has a control transfer from

code in executable x to code in DLL y. We say that x

has an EXE-DLL dependency on y.

– A DLL-DLL dependency in a DLL Dependency Graph

is when there is has a control transfer from code in

DLL x to code in DLL y. We say that x has a DLL-DLL

dependency on y

Visualizing binaries executed

• Call graph is large.

• Group functions to images => DLL

dependency graph.

• DLL dependency graph is still large.

• Group DLLs by properties:

– By functionality: graphics, audio, network…

– By vendor: microsoft, adobe…

– By path: C:\windows\system32*.dll,

D:\vmware*.dll…

Grouping by functionality

wget: DLL dependency without grouping

Grouping by functionality

wget: DLL dependency with grouping

Examples of grouping
By functionality (GIMP)

Examples of grouping
By software vendor (GIMP)

Boot trace

 Most common dlls

e.g kernel32, gdi32

Svchost using

a lot of dlls

Conclusion

• Actual software dependencies quite

complex in Windows

• 2 effective visualizations:

– EXE Dependency Graphs: commonality

between binaries

– DLL Dependency Graphs: actual binary

usage

